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Two Pb(II) complexes with 8-quinolinol (8-Quin), 5-chloro thiophene-2-carboxylic acid, and
(5-CTPC)/5-bromo thiophene-2-carboxylic acid (5-BTPC) have been synthesized and
characterized by IR, 13C NMR, and solid state photoluminescence spectra. The structures of
[Pb(8-Quin)4](5-CTPC)2 (1) and [Pb(8-Quin)2(8-Quio)](5-BTPC) (2) [(8-Quio)¼ 8-quinolinolate]
have been confirmed by X-ray crystallography. Both complexes crystallize in the triclinic crystal
system with a space group P�1. In 1, Pb(II) is eight coordinate by four bidentate 8-quinolinol
groups, while in 2 it is six coordinate by two bidentate 8-quinolinol groups and one bidentate
8-quinolinolate group. This leads to square antiprismatic and pentagonal pyramidal geometries
around Pb(II) in 1 and 2, respectively. Two of the 5-CTPC ligands in 1 and a 5-BTPC in 2 are
involved in strong O–H� � �O hydrogen bonding in the lattice. Cl� � �� interactions are found in 1.
The crystal structures are stabilized by weak C–H� � �O and �–� stacking interactions.

Keywords: Thiophene 2-carboxylic acid; Pb(II); Single-crystal diffraction studies; �–� Stacking
interaction; Fluorescence

1. Introduction

Construction of organic–inorganic hybrid materials is of interest for interesting
framework structures [1–9] and a variety of applications [1, 10–12]. Coordination
complexes based on s, d, and even f block metal ions have been studied [13–15], but
main group elements show unique coordination modes as well as electronic properties
compared to d-block elements; complexes of nontransition metals have diverse
structures. Valence s and p electrons play a major role in molecular structure. The
metals also show applications in photovoltaic conversion, fluorescent sensors, and
electroluminescent devices [16].

Lead is highly toxic, occurring in both biological systems and natural environment.
As an important p-block element, the coordination chemistry of Pb(II) complexes is of
interest. Pb(II) displays interesting structural features as a result of a large radius,
coordination numbers from 2 to 10 and potentially a stereochemically active lone pair
[17–21]. Pb(II) exhibits inert pair effect and its complexes show the stereochemical
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activity of the valence shell electron lone pair [17, 21–24], making Pb(II) complexes
interesting [25–27].

8-Hydroxyquinoline (8-quinolinol, oxine) and derivatives are good complexing
agents with metal ions [28–30], acting as both neutral and anionic ligands (scheme 1c,
1d). In some structures the protonated hydrogen atom at N1 of the 8-hydroxyquino-
linium mimics the role of metal centre, producing similar patterns (scheme 1) [31]. They
are used as reagents in the extraction of metals in analytical chemistry and for metal
preparation in hydro metallurgy [32]. Some of its metal complexes with copper(II),
zinc(II), or nickel(II) have remarkable antibacterial and antifungal properties [33, 34].
Its Bi(III) complex shows antitumor activity against leukemia [35]. Various remarkable
structural features of metal complexes of oxine and derivatives have been reported by
our group [36–39]. In continuation of our previous work, we now investigate the
interactions of lead(II) ion with 8-quinolinol using 5-CTPC and 5-BTPC as ancillary
ligands (scheme 1). Furthermore, we discuss the influence of two different carboxylates
on the final crystal structures of 1 and 2. The photoluminescence properties of 1 and 2

are also reported.

2. Experimental

2.1. Materials and methods

Commercial starting materials were used without purification. 8-Hydroxyquinoline
(Loba Chemie), 5-chloro thiophene 2-carboxylic acid (Hoechst Aktiengesellschaft),
methanol (Qualigens), 5-bromo thiophene 2-carboxylic acid (Aldrich), and

Scheme 1. (a) and (b) Schematic representation of hydrogen bonding patterns in neutral and protonated
8-quinoninol. (c) and (d) Schematic representation of coordination mode of 8-quinolinolate and 8-quinolinol
with metal.
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Pb(CH3COO)2 � 3H2O (Reidel) were used. IR spectra of the complex from 400 to
4000 cm�1 were recorded as pressed disks (1% by weight in KBr) on a Shimadzu FT IR
spectrophotometer and a Perkin Elmer. 1H-NMR and 13C-NMR spectra were recorded
with a Bruker spectrometer at 400MHz in [D6] DMSO. The fluorescence properties
were studied in the solid state on a HITACHI spectrofluorimeter at room temperature.
Both the excitation slit and emission slit were 5 nm.

2.2. Preparation of [Pb(8-Quin)4](5-CTPC)2 (1)

A methanol solution of 8-hydroxyquinoline (0.0543 g) was added into an aqueous
solution of lead(II) acetate (0.1093 g). The mixture was stirred and heated for 30min.
To this mixture, a methanol solution of 5-CTPC (0.0443 g) was added to give a clear
yellow solution. The resulting solution was allowed to stand in air at room temperature
for 2 weeks. Yellow single crystals suitable for X-ray diffraction were obtained
(yield¼ 66% based on Pb). IR selected bands (cm�1): 3563(w), 3104(m), 2929(m),
1565(s), 1539(s), 1433(w), 1433(s), 1389(s), 1314(m), 1205(m), 1117(m), 1056(m),
997(m), 765(s), 673(m), 519(m), 469(m). 13C NMR (DMSO): �¼ 113.10, 115.20, 121.56,
127.52, 128.39, 129.38, 129.86, 131.15, 136.79, 140.36, 143.15, 147.26, 165.25. The
schematic representation of the complex is given in scheme 2(a).

2.3. Preparation of [Pb(8-Quin)4](5-BTPC)2 (2)

The reaction conditions and procedures for the preparation of 2 were the same as that
of 1, except 5-BTPC was used in the place of 5-CTPC (yield¼ 52% based on Pb). IR
selected bands (cm�1): 3417(w), 2929(m), 1566(s), 1494(s), 1457(s), 1420(s), 1371(s),
1316(s), 1273(s), 1101(s), 821(s), 728(s) cm�1. 13C NMR (DMSO): �¼ 114.03, 114.40,
121.34, 129.11, 129.31, 130.75, 137.34, 146.37, 147.54. The schematic representation of
the complex is given in scheme 2(b).

2.4. Characterization of the complexes

IR spectra: Assignments of selected characteristic IR bands (4000–400 cm�1) of the two
Pb(II) complexes have been carried out. Spectra of 1 and 2 show the carboxyl stretching
vibrations of 5-TPC. The asymmetric and symmetric stretches �as(COO�) and
�s(COO�) were observed at 1565 and 1389 cm�1, 1566 and 1371 cm�1 for 1 and 2,
respectively. The D¼ �as(COO�)� �s(COO�)¼ 176 and 195 cm�1 for 1 and 2,
respectively, only slightly higher than the expected values for ionic carboxylate
(170 cm�1) [40].

2.5. Crystal structure determinations

Intensity data sets were collected at room temperature on a BRUKER SMART
APEXII CCD [41] area-detector diffractometer equipped with graphite monochro-
mated Mo-Ka radiation (�¼ 0.71073 Å). The data were reduced using SAINT [41] and
empirical absorption corrections were done using SADABS [41]. The structures were
solved by direct methods using SHELXS-97 [42] and subsequent Fourier analyses,
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refined anisotropically by full-matrix least-squares method using SHELXL-97 [42]
within the WINGX suite of software, based on F2 with all reflections. All hydrogen
atoms on carbon were positioned geometrically and refined by a riding model with Uiso
1.2 times that of carbon. All non H atoms were refined anisotropically. Hydrogen
atoms of the hydroxy groups of 8-Quin were located in difference Fourier maps. The
molecular structures were drawn using ORTEP-III [43] and POV-ray [44]. Crystal data
and selected parameters are summarized in tables 1 and 2, respectively. The crystals
remained stable throughout data collection.

3. Results and discussion

3.1. Geometry around Pb(II) atom

The lone pair of electrons has a great influence on the structure of the complexes [17,
23]. The coordination numbers of lead in 1 and 2 are eight and six, respectively,
displaying square antiprismatic and pentagonal pyramidal geometries. In 1 each lead is
surrounded by four nitrogen atoms and four oxygen atoms from four neutral 8-Quin.
Both upper and lower prisms contain the alternative arrangement of nitrogen and
oxygen atoms(figure 1a). In 2 the axial position of the pentagonal pyramid is occupied
by N1 from the 8-Quio anion (figure 1b). The arrangement of 8-Quin around Pb(II) in 1

Scheme 2. Schematic representation of 1 and 2.
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Table 1. Crystal data and structure refinement information.

1 2

Empirical formula C36H28N4O4Pb, 2(C5H2ClO2S) C27H20N3O3Pb, C5H2BrO2S
Formula weight 1111.00 847.70
Temperature (K) 296 296
Wavelength (Å) 0.71073 0.71073
Crystal system Triclinic Triclinic
Space group P �1 P�1

Unit cell dimensions (Å, �)
a 10.8929(1) 11.727(5)
b 11.5760(1) 11.821(5)
c 17.8963(2) 12.256(5)
� 96.141(1) 69.866(5)
� 99.217(1) 75.686(5)
� 95.774(1) 71.666(5)
Volume (Å3), Z 2198.74(4), 2 1495.7(11), 2
Calculated density (g cm�3) 1.678 1.882
Absorption coefficient (mm�1) 4.112 7.092
F(000) 1096 816
Crystal size (mm3) 0.04� 0.04� 0.05 0.08� 0.09� 0.09
Number of reflections collected 8181 9641
Number of restraints 0 0
Goodness-of-fit on F2 1.03 1.04
Final R1 index [I4 2	(I)] 0.0308 0.0329
wR2 (all data) 0.0679 0.0790
Largest difference peak and hole (e Å�3) �0.40 and 0.53 �1.23 and 1.18

R1¼
P

(||Fo|�|Fc||)/
P

| Fo |; wR2¼ [
P

w(|Fo|�|Fc |
2)2] /

P
w(|Fo|

2)]1/2.

Table 2. Selected bond lengths (Å) and angles (�) for 1 and 2.

Complex 1 Complex 1 Complex 2

Pb1–O1 2.639(3) O1–Pb1–O2 125.05(10) O1–Pb1–O2 133.73(8)
Pb1–O2 2.568(3) O1–Pb1–O3 78.11(10) O1–Pb1–O3 129.01(8)
Pb1–O3 2.606(3) O1–Pb1–O4 133.10(10) O1–Pb1–N1 70.64(11)
Pb1–O4 2.668(3) O1–Pb1–N1 59.70(10) O1–Pb1–N2 84.05(10)
Pb1–N1 2.779(3) O1–Pb1–N2 82.04(11) O1–Pb1–N3 78.41(10)
Pb1–N2 2.650(3) O1–Pb1–N3 139.53(10) O2–Pb1–O3 72.35(7)
Pb1–N3 2.647(3) O1–Pb1–N4 87.22(10) O2–Pb1–N1 75.43(10)
Pb1–N4 2.716(3) O2–Pb1–O3 124.95(11) O2–Pb1–N2 60.14(9)

O2–Pb1–O4 78.37(10) O2–Pb1–N3 129.31(9)
Complex 2 O2–Pb1–N1 75.62(10) O3–Pb1–N1 79.90(10)
Pb1–O1 2.271(3) O2–Pb1–N2 62.51(10) O3–Pb1–N2 131.86(9)
Pb1–O2 2.753(3) O2–Pb1–N3 79.99(10) O3–Pb1–N3 58.15(9)
Pb1–O3 2.824(3) O2–Pb1–N4 138.85(10) N1–Pb1–N2 81.22(11)
Pb1–N1 2.435(4) O3–Pb1–O4 124.67(10) N1–Pb1–N3 85.40(11)
Pb1–N2 2.643(3) O3–Pb1–N1 135.40(10) N2–Pb1–N3 160.70(11)
Pb1–N3 2.701(4) O3–Pb1–N2 75.18(10) O4–C28–O5 125.5(5)

O3–Pb1–N3 61.57(10)
O3–Pb1–N4 82.53(10)
O4–Pb1–N1 96.36(10)
O4–Pb1–N2 139.38(10)
O4–Pb1–N3 78.20(10)
O4–Pb1–N4 60.48(10)
O7–C42–O8 126.9(5)
O5–C37–O6 126.4(4)

Lead(II) 8-quinolinol 4401
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does not show a gap or hole in the coordination geometry, indicating that the lone pair
of electrons on lead(II) is inactive in this complex. The coordination geometry of 2

shows a gap around Pb(II), occupied possibly by a stereoactive lone pair of electrons
giving hemidirected coordination. In 1 the coordination geometry is holo directed and
the difference between the Pb–O and Pb–N is relatively small. In 2, which is
hemidirected, there is a large difference between Pb–O and Pb–N distances, indicating
an active lone pair.

3.2. Crystal structure description of [Pb(8-Quin)4](5-CTPC)2] (1)

The asymmetric unit of 1 consists of four neutral 8-Quin coordinated to lead. In
addition, two 5-CTPC anions are ligands of crystallization. Four O–H� � �O hydrogen
bonds (table 3) are found between hydroxyl groups of 8-Quin and 5-CTPC (figure 2).
Each pair of O–H� � �O hydrogen bonds with two 8-hydroxyquinoline and a 5-CTPC lie
in the same plane (figure 2). Also there are weak C–H� � �O hydrogen bonds between the
hydroxyl oxygen atoms of the 8-hydroxyquinolines and carboxylate oxygens. �–�
Stacking interactions can be found between the five-membered rings of the thiophene
carboxylic acid [S2, C43, C44, C45,C46] and nitrogen-containing six-membered rings of
8-Quin [N1, C1, C2, C3, C8, C9] (figure 3). Such interactions are also found between two
six-membered rings of 8-Quin (figure 3).

C–O bonds of 8-quinoninol are slightly longer than in other 8-quinolinato metal
complexes (�1.32 Å) and shorter than the normal single bond in ether and alcohols
(41.4 Å). The C–O bond lengths of coordinated 8-quinoninol ligands lie in the range of
1.36 Å. The Pb–N and the Pb–O distances of [Pb(8-Quin)4](5-CTPC)2 lies in the ranges
of 2.7 Å and 2.6 Å, respectively, which is slightly higher than similar complexes [45–51].
The O–C� bond angles of the carboxylates are O5–C38–O6¼ 126.3(4)�, O7–C43–
O8¼ 126.8(5)�, while that of aromatic carboxylates lie at the lattice 122–123�. The four
chelate rings, Pb1/O1/C7/C9/N1, Pb1/O2/C16/C18/N2, Pb1/O3/C25/C27/N3, and

Figure 1. Representation of the geometries and environment around Pb(II) in 1 and 2, respectively.

4402 S.J. Jenniefer et al.
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Pb1/O4/C34/C36/N4, make dihedral angles of 84.27(15)�, 83.10(15)�, 88.69(15)�, and
74.22(15)�, respectively, with each other.

The mean chelate angles Pb–O–C, Pb–N–C and the mean bite angle O–Pb–N are
close to reported metal complexes of 8-hydroxyquinoline (table 2). A Cl� � �� interac-
tion is found between Cl1 of the five-membered thiophene ring involving C41, C40, C39,
C38, S1 and the six-membered N-hetero ring of 8-Quin involving N4i, C28i, C29i,

Figure 2. ORTEP of 1 showing the atom-numbering scheme and hydrogen bonding in coordinated ligands.
Displacement ellipsoids are drawn at the 50% probability level for all non hydrogen atoms; hydroxy
hydrogen atoms involved in hydrogen bonding are shown as small spheres of arbitrary radii. All other
hydrogen atoms are omitted for clarity.

Table 3. Hydrogen bonding parameters (Å, �).

D–H� � �A D–H H� � �A D� � �A D–H� � �A

Complex 1

O1–H1A� � �O8 0.75(5) 1.81(5) 2.545(5) 168(6)
O2–H2A� � �O5 0.75(4) 1.71(4) 2.453(5) 171(5)
O3–H3A� � �O7 0.91(4) 1.60(5) 2.498(5) 175(4)
O4–H4A� � �O6 0.80(3) 1.77(3) 2.564(5) 170(5)
C15–H15� � �O5 0.9300 2.5600 3.130(5) 120.00
C24–H24� � �O7 0.9300 2.5800 3.197(6) 124.00
C33–H33� � �O6 0.9300 2.5500 3.201(5) 127.00

Complex 2

O2–H1A� � �O4 0.81(4) 1.71(4) 2.519(5) 177(3)
O3–H2A� � �O5 0.80(3) 1.79(3) 2.583(4) 169(4)
C1–H1� � �O2 0.9300 2.5700 3.138(6) 120.00
C15–H15� � �O4 0.9300 2.5100 3.149(6) 126.00
C19–H19� � �O1 0.9300 2.5100 3.149(5) 126.00

Lead(II) 8-quinolinol 4403
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C30i, C35i, C36i [symmetry code i: x,�1þ y,z] (figure 4b). Each Pb(II) is connected by the
Cl� � �� interaction forming a chain which extends along the b-axis. Two of these adjacent
chains are interlinked by the C4–H4� � �Cg2ii [symmetry code ii: 1� x,1� y,1� z] (figure
4a). Cg2¼ [C13, C14, C15, C16, C18, C17].

3.3. Crystal structure description of [Pb(8-Quin)2(8-Quio)](5-BTPC)] (2)

The asymmetric unit of 2 consists of two neutral 8-Quin and a 8-Quio anions
coordinated to lead. The two neutral 8-Quin ligands lie on the same plane while 8-Quio
anion lies perpendicular to the plane containing the neutral 8-Quin. The Pb–N and the
Pb–O distances of 2 depend on 8-Quin and 8-Quio anion with Pb–N and the Pb–O
distances of the 8-Quio anion less than that of the neutral 8-Quin (table 2).

Similar to 1 where two 5-CTPC anions have O–H� � �O bonding interactions, in 2 a
5-BTPC anion is present as a ligand of crystallization that exhibits O–H� � �O hydrogen
bonds (table 3) with the hydroxyl groups of neutral 8-Quin (figure 5). The O4–C28–O5
bond angle of carboxylate is 125.5(5)�. There are weak C–H� � �O hydrogen bonds
between hydroxyl oxygen atoms of the 8-hydroxyquinolines and carboxylate oxygen
atoms (table 3).

Two symmetry-related Pb(II) monomers are connected by �–� stacking interactions
between 8-Quin (Cg1!Cg2i and Cg2!Cg4i [symmetry code i¼ 2� x,1� y,2� z]).
The Pb� � �Pb separation is 4.086 Å and these monomeric units are further connected
by �–� stacking interactions Cg1!Cg1ii and C–H� � �Cg3ii [symmetry code ii¼ 2� x,
1� y, 1� z]. [Cg1¼N2,C10, C11, C12, C17, C18; Cg2¼C22,C23, C24, C25, C27, C26;

Figure 3. (a) A view of the �–� stacking interactions between two quinoline rings shown as a space-filled
model. (b) Packing diagram showing the �–� stacking interactions as dashed lines in 1.

4404 S.J. Jenniefer et al.
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Cg3¼C4,C5,C6, C7, C9, C8; Cg4¼C13,C14, C15, C16, C18, C17]. These �–� stacking
and C–H� � �� interactions form chains of monomeric units along the c-axis (figure 6).

3.4. Luminescent properties

Photoluminescence of main group metal complexes are less investigated than transition
and lanthanide-metal complexes [52–54]. Luminescent properties of 1 and 2 have been
investigated in the solid state at room temperature. Compounds 1 and 2 exhibit intense
and broad emission bands with maxima at ca 543 and 544 nm upon excitation at 456
and 457 nm (Supplementary material); emission spectra of 1 and 2 are similar.
According to previous reports, this emission band could be assigned to ligand-to-metal
charge transfer (LMCT) [55, 56]. The observation indicates that 1 and 2 may be used as
candidates for a new class of photoactive materials.

4. Conclusions

We prepared and studied the first lead complex with 8-Quin and thiophene carboxylic
acid. In contrast to previously reported Pb(II) coordination complexes which contain
quinolinate anions, Pb(8-Quin)4](5-CTPC)2 (1) and [Pb(8-Quin)2(8-Quio)](5-BTPC) (2)

Figure 4. (a) The Pb(II) monomeric units connected by the Cl� � �� interaction forming chains which extend
along the b-axis. (b) A projected view of the packing diagram showing the Cl� � �� interaction as bold dotted
lines [symmetry code: i: x,�1þ y,z].

Lead(II) 8-quinolinol 4405
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Figure 6. A view of the �–� stacking interactions along the a-axis; hydrogen atoms and 5-BTPC are omitted
for clarity.

Figure 5. ORTEP of 2 showing the atom-numbering scheme and hydrogen bonding in coordinated ligands.
Displacement ellipsoids are drawn at the 50% probability level for all non hydrogen atoms; hydroxy H
involved in hydrogen bonding are shown as small spheres of arbitrary radii. All other hydrogen atoms are
omitted for clarity.
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show the less-commonly occurring neutral coordinated 8-Quin. Complexes 1 and 2 are
structurally different, illustrating the influence of halo substituent in the thiophene
carboxylates. There are Cl–� interactions in 1 and no such Br–� interactions in 2. The
carboxylates allow the formation of O–H� � �O hydrogen bonds. Solid state emission
spectra of 1 and 2 have emission peaks at 543 and 544 nm upon excitation at 456 and
457 nm.

Supplementary material

CCDC 874816 and CCDC 874815 contain the supplementary crystallographic data for
1 and 2, respectively, and can be obtained free of charge via http://www.ccdc.cam.
ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Center, 12
Union Road, Cambridge CB2 IEZ, UK; Fax: (þ44)1223-336-033; or Email:
deposit@ccdc.cam.ac.uk
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